AI团队



           




 


刘翘铭  博士/讲师(百人计划B岗)

主要研究方向为:生物大数据分析与管理;单细胞数据分析算法与系统;深度聚类分析;深度表示学习。主持国家自然基金、国家博士后科学基金、河南省自然科学基金等项目,并入选2023年度国家博士后资助计划。以第一或通讯作者在Briefings in BioinformaticsIEEE JHBIIEEE TCBBIEEE BIBM等生物信息学权威期刊或会议发表论文15篇。


主要任职:

中国计算机学会(CCF)会员,生物信息学专委会委员;

Cell Proliferation青年编委;

Bioinformatics》、《Briefings in Bioinformatics》、《Frontiers in Genetics》、《PLOS Computational Biology》等生物信息学期刊审稿人。


电子邮箱:lqmmring@163.com


教育及工作经历:

2025.02至今   河南大学, 人工智能学院

2023.02-2025.02   哈尔滨工业大学, 生物医学工程, 博士后

2018.09-2022.12   哈尔滨工业大学, 计算机应用技术, 工学博士

2018.04-2018.09   中山大学眼科中心、精准医学科学中心, 访问学者


研究领域:

生物大数据分析与管理;单细胞数据分析算法与系统

深度聚类分析;深度表示学习


论文:

[1]Liu, Q., Zhang, D., Wang, G., & Wang, Y. (2024). Automatically detecting anchor cells and clustering for scRNA-seq data using scTSNN. IEEE Journal of Biomedical and Health Informatics. Early Access, doi: 10.1109/JBHI.2024.3460761. (IF:7.122, 中科院小类1, JCR Q1, TOP期刊)

[2]Liu, Q., Wang, Y., & Wang, G. (2024, December). scEAGC: an efficient anchor graph clustering for single-cell transcriptomics and proteomics data. In 2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (pp. 320-326). IEEE. (CCF B类会议, 生物信息学顶会)

[3]Liu, Q., Wang, D., Zhou, L., Li, J., & Wang, G. (2023). MTGDC: A multi-scale tensor graph diffusion clustering for single-cell RNA sequencing data. IEEE/ACM Transactions on Computational Biology and Bioinformatics. (IF:3.71, 中科院大类3, JCR Q2, CCF B类期刊)

[4]Liu, Q., Luo, X., Li, J., & Wang, G. (2022). scESI: evolutionary sparse imputation for single-cell transcriptomes from nearest neighbor cells. Briefings in Bioinformatics, 23(5), bbac144. (IF:13.994, 中科院小类1, JCR Q1, TOP期刊)

[5]Liu, Q., Wan, J., & Wang, G. (2022). A survey on computational methods in discovering protein inhibitors of SARS-CoV-2. Briefings in Bioinformatics, 23(1), bbab416. (IF:13.994, 中科院小类1, JCR Q1, TOP期刊)

[6]Liu, Q., Zhao, X., & Wang, G. (2023). A clustering ensemble method for cell type detection by multiobjective particle optimization. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 20(1), 1-14. (IF:3.71, 中科院大类3, JCR Q2, CCF B类期刊)

[7]Liu, Q., Liang, Y., Wang, D., & Li, J. (2022). LFSC: A linear fast semi-supervised clustering algorithm that integrates reference-bulk and single-cell transcriptomes. Frontiers in Genetics, 13, 1068075. (IF:3.3, 中科院大类3, JCR Q2)

[8]Zhao, H., Li, H., Liu, Q., Dong, G., Hou, C., Li, Y., & Zhao, Y. (2024). Using TransR to enhance drug repurposing knowledge graph for COVID-19 and its complications. Methods, 221, 82-90. (IF:4.2, 中科院大类3, JCR Q2)

[9]Ren, T., Huang, S., Liu, Q., & Wang, G. (2023). scWECTA: A weighted ensemble classification framework for cell type assignment based on single cell transcriptome. Computers in Biology and Medicine, 152, 106409. (IF:6.924, 中科院小类1, JCR Q1, TOP期刊)

[10]Han, X., Liu, Q., Wang, H., & Wang, L. (2018). Novel fruit fly optimization algorithm with trend earch and co-evolution. Knowledge-Based Systems, 141, 1-17. (IF:8.038, 中科院1, JCR Q1, TOP期刊)

[11]Zhou, R., Liu, Q., Wang, J., Han, X., & Wang, L. (2021). Modified semi-supervised affinity propagation clustering with fuzzy density fruit fly optimization. Neural Computing and Applications, 33, 4695-4712. (IF:5.606, 中科院大类3, JCR Q1, CCF C )

[12]Zhou, R., Liu, Q., Xu, Z., Wang, L., & Han, X. (2017). Improved fruit fly optimization algorithm-based density peak clustering and its applications. Tehnički vjesnik, 24(2), 473-480. (IF:0.783, 中科院大类4, JCR Q3)

[13]Han, X., Liu, Q., Wang, L., Lu, H., Zhou, L., & Wang, J. (2020). An improved fruit fly optimization algorithm based on knowledge memory. International Journal of Computers and Applications, 42(6), 558-568.

[14]Zhou, R., Liu, Q., Han, X., & Wang, L. (2018). Density peak clustering algorithm using knowledge learning-based fruit fly optimization. International Journal of Computers and Applications, 40(3), 1-10.

[15]Zhou, F., Han, X., Liu, Q., Li, M., & Li, Y. (2021). Chinese Clinical Named Entity Recognition Based on Stroke-Level and Radical-Level Features. In Smart Computing and Communication: 5th International Conference, SmartCom 2020, Paris, France, December 29–31, 2020, Proceedings 5 (pp. 9-18). Springer International Publishing.



科研项目:

1. 国家自然科学基金青年项目“面向单细胞时空转录组数据的肿瘤表型相关细胞及空间域识别方法研究”,2025.1-2027.12,主持。

2. 中国博士后面上项目“基于多源转录组数据的肿瘤药物反应预测及分析方法研究”,2023.8-2025.2,主持。

3. 国家博士后资助计划“单细胞空间转录组数据的肿瘤表型相关细胞亚群识别及反卷积方法研究”,2023.2-2025.2,主持。

4. 河南省自然科学基金青年项目,2024.1-2025.12,主持。



 





邮编:450046

地址:中国 河南 郑州.明理路北段379号河南大学(郑州校区)

官方微信

 |   版权所有©河南大学人工智能学院